skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Madani, Nima"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Solar‐induced chlorophyll fluorescence (SIF) shows enormous promise as a proxy for photosynthesis and as a tool for modeling variability in gross primary productivity and net biosphere exchange (NBE). In this study, we explore the skill of SIF and other vegetation indicators in predicting variability in global atmospheric CO2observations, and thus global variability in NBE. We do so using a 4‐year record of CO2observations from NASA's Orbiting Carbon Observatory 2 satellite and using a geostatistical inverse model. We find that existing SIF products closely correlate with space‐time variability in atmospheric CO2observations, particularly in the extratropics. In the extratropics, all SIF products exhibit greater skill in explaining variability in atmospheric CO2observations compared to an ensemble of process‐based CO2flux models and other vegetation indicators. With that said, other vegetation indicators, when multiplied by photosynthetically active radiation, yield similar results as SIF and may therefore be an effective structural SIF proxy at regional to global spatial scales. Furthermore, we find that using SIF as a predictor variable in the geostatistical inverse model shifts the seasonal cycle of estimated NBE and yields an earlier end to the growing season relative to other vegetation indicators. These results highlight how SIF can help constrain global‐scale variability in NBE. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)