Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available November 1, 2025
-
Abstract Solar‐induced chlorophyll fluorescence (SIF) shows enormous promise as a proxy for photosynthesis and as a tool for modeling variability in gross primary productivity and net biosphere exchange (NBE). In this study, we explore the skill of SIF and other vegetation indicators in predicting variability in global atmospheric CO2observations, and thus global variability in NBE. We do so using a 4‐year record of CO2observations from NASA's Orbiting Carbon Observatory 2 satellite and using a geostatistical inverse model. We find that existing SIF products closely correlate with space‐time variability in atmospheric CO2observations, particularly in the extratropics. In the extratropics, all SIF products exhibit greater skill in explaining variability in atmospheric CO2observations compared to an ensemble of process‐based CO2flux models and other vegetation indicators. With that said, other vegetation indicators, when multiplied by photosynthetically active radiation, yield similar results as SIF and may therefore be an effective structural SIF proxy at regional to global spatial scales. Furthermore, we find that using SIF as a predictor variable in the geostatistical inverse model shifts the seasonal cycle of estimated NBE and yields an earlier end to the growing season relative to other vegetation indicators. These results highlight how SIF can help constrain global‐scale variability in NBE.more » « less
-
Abstract Soil respiration (i.e. from soils and roots) provides one of the largest global fluxes of carbon dioxide (CO2) to the atmosphere and is likely to increase with warming, yet the magnitude of soil respiration from rapidly thawing Arctic-boreal regions is not well understood. To address this knowledge gap, we first compiled a new CO2flux database for permafrost-affected tundra and boreal ecosystems in Alaska and Northwest Canada. We then used the CO2database, multi-sensor satellite imagery, and random forest models to assess the regional magnitude of soil respiration. The flux database includes a new Soil Respiration Station network of chamber-based fluxes, and fluxes from eddy covariance towers. Our site-level data, spanning September 2016 to August 2017, revealed that the largest soil respiration emissions occurred during the summer (June–August) and that summer fluxes were higher in boreal sites (1.87 ± 0.67 g CO2–C m−2d−1) relative to tundra (0.94 ± 0.4 g CO2–C m−2d−1). We also observed considerable emissions (boreal: 0.24 ± 0.2 g CO2–C m−2d−1; tundra: 0.18 ± 0.16 g CO2–C m−2d−1) from soils during the winter (November–March) despite frozen surface conditions. Our model estimates indicated an annual region-wide loss from soil respiration of 591 ± 120 Tg CO2–C during the 2016–2017 period. Summer months contributed to 58% of the regional soil respiration, winter months contributed to 15%, and the shoulder months contributed to 27%. In total, soil respiration offset 54% of annual gross primary productivity (GPP) across the study domain. We also found that in tundra environments, transitional tundra/boreal ecotones, and in landscapes recently affected by fire, soil respiration often exceeded GPP, resulting in a net annual source of CO2to the atmosphere. As this region continues to warm, soil respiration may increasingly offset GPP, further amplifying global climate change.more » « less
An official website of the United States government
